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through a region downstream of 3’-UTR: possible contribution to ammonia
detoxification. Am J Physiol Endocrinol Metab 307: EA85-EA93, 2014. First
published July 29, 2014; doi:10.1152/ajpendo.00177.2014.—Skeletal mus-
cle is a reservoir of energy in the form of protein, which is degraded
under catabolic conditions, resulting in the formation of amino acids
and ammonia as a byproduct. The expression of FOXO1, a forkhead-
type transcription factor, increases during starvation and exercise. In
agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in
skeletal muscle exhibit muscle atrophy. The aim of this study was to
examine the role of FOXO1 in amino acid metabolism. The mRNA
and protein expressions of glutamine synthetase (GS) were increased
in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and
GS expression in wild-type mice but hardly increased GS expression
in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation
of FOXO1 also increased GS mRNA and protein expression in C>C»
myoblasts. Using a transient transfection reporter assay, we observed
that FOXO1 activated the GS reporter construct. Mutation of a
putative FOXO1-binding consensus sequence in the downstream
genomic region of GS decreased basal and FOXO1-dependent re-
porter activity significantly. A chromatin immunoprecipitation assay
showed that FOXO1 was recruited to the 3’ region of GS in C,C»
myoblasts. These results suggest that FOXO1 directly upregulates GS
expression. GS is considered to mediate ammonia clearance in skel-
etal muscle. In agreement, an intravenous ammonia challenge in-
creased blood ammonia concentrations to a twofold higher level in
FOXO1-KO than in wild-type mice, demonstrating that the capacity
for ammonia disposal correlated inversely with the expression of GS
in muscle. These data indicate that FOXOI1 plays a role in amino acid
metabolism during protein degradation in skeletal muscle.

forkhead box protein O1; 3’-untranslated region; skeletal muscle
metabolism; gene regulation; transcription factors; amino acid; am-
monia

FORKHEAD BOX PROTEIN Ol (FOXO1) is a forkhead-type tran-
scription factor with opposite effects on the anabolic insulin
pathway (22, 24). FOXO1 expression is markedly upregulated
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during energy deprivation (17, 24). We generated transgenic
mice that selectively overexpress FOXO1 in skeletal muscles
(FOXO1-Tg mice); these mice exhibited muscle atrophy (16).
In skeletal muscle of FOXOI1-Tg mice, the expression of
lysosomal protease cathepsin L was markedly upregulated
(35), suggesting that FOXO1 induces protein degradation in
skeletal muscle.

Skeletal muscle is the largest organ in the human body
and constitutes about 40% of body weight. Furthermore, it is
a reservoir of energy in the form of protein (amino acids).
During starvation, structural skeletal muscle proteins such
as myosin and actin are catabolized and used as energy
sources for other organs (26). Microarray analysis has
shown that under various conditions causing muscle atro-
phy, a gene that is related to amino acid metabolism,
glutamine synthetase (GS), is upregulated and accompanied
with increased expression of FOXO1 (20, 21). In fact, we
observed increased mRNA and protein expression of GS in
FOXO1-Tg mice (6). Recently, it was also reported that
FOXO03, a homologue of FOXO1, activated GS expression
in an in vitro cellular study (31).

The only enzyme capable of glutamine synthesis in mam-
mals is GS (14). Skeletal muscle is considered to be an
important organ for glutamine synthesis (14). GS fixes ammo-
nia during the conversion of glutamate to glutamine. He et al.
(14) showed that skeletal muscle-specific GS-knockout (KO)
mice exhibit a reduced capacity to detoxify ammonia during
muscular protein degradation. GS expression is activated by
glucocorticoids and suppressed by insulin (2, 9, 34). Stanulovic¢
et al. (28) showed that both the 5’ upstream enhancer and
downstream regulatory sequences of the 3’-untranslated region
(UTR) are important for GS expression in skeletal muscle.
However, the regulatory sequences that mediate the expression
of GS in skeletal muscle in vivo by FOXO1 have not yet been
identified.

The aim of this study was to examine the effects of FOXO1
on muscle protein and amino acid metabolism. In this study,
we hypothesized that FOXO1 regulates GS expression in
skeletal muscle in vivo and may affect glutamine/ammonia
metabolism. Thus we examined GS expression regulation by
FOXOL1 in skeletal muscle and investigated its physiological
significance.
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MATERIALS AND METHODS

Genetically modified animals. Transgenic mice overexpressing
FOXOL1 specifically in skeletal muscles (FOXO1-Tg mice) under the
control of the human skeletal muscle a-actin promoter were generated
as described previously (16). To generate skeletal muscle-specific
FOXOI1 knockout mice (FOXO1-KO), we inactivated FOXO1 ex-
pression in skeletal muscles by crossing mice carrying a floxed
FOXO1 allele with myogenin-Cre transgenic mice (35). FOXO1-KO
were back-crossed with C57BL6 and were congenic (35). We used
wild-type littermates of FOXO1-Tg and FOXO1-KO mice as controls.
The mice were maintained at a constant temperature of 24°C with
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fixed artificial light (12:12-h light-dark cycle). All animal experiments
were conducted in accordance with the guidelines of and approved by
the Tokyo Medical and Dental University Committee on Animal
Research (No. 0090041).

Quantitative real-time RT-PCR analysis. Total RNA was isolated
from tissue and cell homogenates using TRIzol (Life Technologies
Japan, Tokyo, Japan). cDNA was synthesized from 1 g of each RNA
sample using the QuantiTect Reverse Transcription Kit (Qiagen,
Tokyo, Japan). Gene expression levels were measured as described
previously (30). The following primers were used: FOXO1 forward,
5'-GCGGGCTGGAAGAATTCAAT-3'; FOXO1 reverse, 5'-TCCA-
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GTTCCTTCATTCTGCA-3'; cathepsin L forward, 5'-TCTCACG-
CTCAAGGCAATCA-3"; cathepsin L reverse, 5'-AAGCAA-
AATCCATCAGGCCTC-3'; GS forward, 5'-GCTGCAAGACCCG-
TACCCT-3'; GS reverse, 5'-TTCCACTCAGGTAACTCTTCCACA-
3’; alanine aminotransferase 2 (ALT2) forward, 5'-GAAGGAAGTAGC-
CGCATCCA-3"; ALT2 reverse, 5'-AGGAAAAGCTGTAGACCGT-
CACA-3’; branched-chain amino acid aminotransferase 2 (BCAT?2)
forward, 5'-TGGATCTGGCCAGGACTTGG-3'; BCAT2 reverse, 5'-
TGGTAGGTATGTGGAGTTGC-3'; branched-chain keto acid dehydro-
genase (BCKDH) forward, 5'-CCCAGGGATCAAGGTGGTAAT-3';
BCKDH reverse, 5'-GAAGTCCCTTGGCCTGGAA-3'; branched-
chain keto acid dehydrogenase kinase (BCKDK) forward, 5'-
GATCCGAATGCTGGCTACTCA-3’; BCKDK reverse, 5'-GCCAA-
CAAAATCAGGCTTGTC-3’; 36B4 forward, 5'-GGCCCTGCAC-
TCTCGCTTTC-3'; 36B4 reverse, 5'-TGCCAGGACGCGCTTGT-3'.
Western blot analysis. Western blot analysis was performed as
described previously (13). Densitometric analysis was done using
Imagel software (http://rsb.info.nih.gov/ij/index.html). The following

E487

primary antibodies were used: anti-FOXO1 (sc-11350; Santa Cruz
Biotechnology, Santa Cruz, CA) and anti-GS (GTX109121; Gene
Tex, Irvine, CA).

C>C 2 cells and cell cultures. CoC1> mouse myoblasts (Riken Cell
Bank, Tsukuba, Japan) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM), which contains 4 mM glutamine supplemented
with 10% fetal bovine serum (FBS), until the cells reached conflu-
ence. C>Cy» cells stably expressing the FOXO1-estrogen receptor
(ER) fusion protein were prepared as described previously (35). In
brief, CoC;» cells were stably transfected with either the empty
pBABE retroviral vector or pBABE vectors expressing fusion pro-
teins containing a constitutively active form of human FOXOI1 in
which the Akt phosphorylation sites Thr?#, Ser®>®, and Ser®'® are
replaced with alanine [FOXO1(3A)] in frame with a modified tamox-
ifen-specific version of the ligand-binding domain murine ER (35).
Cells were selected with puromycin, and the colonies were pooled for
analysis. Fusion proteins were restricted to the cytoplasmic compart-
ment until activation with tamoxifen, which caused FOXOI1-ER to
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Fig. 3. Gene expression in C2C» cells expressing FOXO1-ER. The abundance
of mRNA transcripts of cathepsin L, GS, ALT2, BCAT2, BCKDH, and
BCKDK in FOXO1-ER-expressing C>Cy» cells in culture medium with 4 mM
glutamine treated with vehicle (open bars) or tamoxifen (black bars) for 18 h
was analyzed using quantitative real-time RT-PCR. mRNA levels were nor-
malized to those of 36B4 mRNA. **#*P < (0.001 and **P < 0.01 compared
with the samples without tamoxifen (n = 3; means *= SE).

relocate to the nucleus, where the FOXO1 moiety then functioned as
a transcription factor (35). For Western blotting, cells at near-conflu-
ence were treated with DMEM, with or without 4 mM glutamine,
supplemented with FBS for 24 h and treated with tamoxifen for
another 24 h.

Plasmid constructs. As shown in Fig. 5, a serial set of reporter
plasmids was constructed. Figure 5, fop, shows mouse genomic DNA
(GS gene). The constructs included a 3.4-kb genomic promoter region
and the first exon (—3,397 to +140, from the transcription start site),
the luciferase reporter gene, the GS transcription termination and
polyadenylation signal (3’-UTR), and the immediate downstream
sequence (GS tail). The longest construct contained the 5’ promoter
region (—3,397 to +140) and GS tail (3'-UTR of 1,531 bp and GS tail
of 526 bp). We constructed various deletion constructs from the
longest plasmid, as shown in Fig. 5. In addition, the consensus
FOXO1-binding sequence GTAAACAA [dafl6-binding element
(DBE)] (11) in the 3’ GS tail was mutated to GTGGGCAA (bottom
construct in Fig. 5).

Transfection and luciferase assay. C>Ci» cells were plated at a
density of 1 X 10° cells/well in a 12-well plate in DMEM supple-
mented with 10% FBS. Luciferase gene constructs containing the GS
promoter and 3'-UTR/GS tail fragments with or without mutations of
putative FOXO1-binding elements were prepared as described above.
The luciferase reporter plasmid (0.8 pg), expression plasmid [pCAG-
FOXO1(3A): 0, 5, 10, or 25 ng], empty pCAG (=0.8 ng), and
phRL-TK vector (25 ng; Promega, Madison, WI) as an internal
control of transfection efficiency were transfected into C>C» cells
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Twenty-four
hours after transfection, cells were lysed and assayed for luciferase
activity using the Dual Luciferase Assay kit (Promega). The activity
was calculated as the ratio of firefly luciferase activity to Renilla
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luciferase activity (internal control) and expressed as an average of
triplicate experiments.

Chromatin immunoprecipitation assay. Chromatin immunoprecipi-
tation (ChIP) was performed using a ChIP Assay kit (Upstate, Te-
mecula, CA) according to the manufacturer’s instructions and as
described previously (35). In brief, C>C;» cells stably expressing
FOXO1-ER were incubated for 24 h with or without 1 wM tamoxifen.
Proteins were cross-linked to DNA with formaldehyde (final concen-
tration, 1%). Cells were washed and lysed in SDS lysis buffer,
sonicated for 10 s, and allowed to recover for 30 s on ice (7 cycles).
Lysates were cleared using Protein A-agarose for 30 min, pelleted,
and incubated overnight with an anti-FOXO1 antibody (sc-11350;
Santa Cruz Biotechnology). Prior to incubation, input samples were
taken from the lysate and stored at 4°C until extraction. Following
incubation with the antibody, protein-DNA complexes were eluted
(1% SDS in 0.1 M NaHCO,), and cross-links were reversed. DNA
was purified with phenol-chloroform extraction. PCR primers were
designed for regions harboring putative FOXO1-binding elements in
the 5" and 3’ regulatory regions of the GS: forward 5'-GCCATCACT-
GCAGGGTTAAG-3" and reverse 5'-GGACAACCAGGGTTTCA-
CAG-3’ (the amplified region was —1,028 to —876, with the tran-
scription start site being +1) and forward 5'-GGTGGTTCTTGTT-
TACGGACA-3' and reverse 5'-CACTAGGACCCCGTCTCAAA-3’
(the amplified region was 55 to 148 bp downstream of the 3’-UTR of
GS). PCR primers were also designed for GAPDH as a negative
control: forward 5'-TCCTATAAATACGGACTGCAGCC-3’ and re-
verse 5'-ACAGGGAGGAGCAGAGAGCA-3'".

Ammonia challenge. Mice fasted for 16 h [wild-type (WT) and
FOXO1-KO mice; n = 3 each] were anesthetized and equipped for
NH4HCOs infusion into the external jugular vein as described (14). A
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Fig. 4. Protein expression in C>C» cells expressing FOXO1-ER. Total lysates
from C2C,2 were subjected to SDS-PAGE followed by Western blot analysis
with anti-FOXO1 and anti-GS antibodies. Typical blots are shown. Molecular
size marker is indicated on the /eft side of the blots. C2Cy2 cells in culture
medium with (+) or without (—) 4 mM glutamine treated with vehicle (—) or
tamoxifen (+) were analyzed (n = 3). In these samples, we confirmed
increased mRNA expression of GS, as observed in Fig. 3. Open arrowhead
indicates endogenous FOXOT1; black arrowhead indicates FOXO1-ER signals
(top).
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solution containing NH,HCO5; was infused at a flow rate of 50
pwmol/h, and 80 min after infusion, blood ammonia levels were
examined using the Pocket Chem BA PA-4140 (Arkray, Tokyo,
Japan).

Statistical analyses. We used Student’s #-test and analysis of
variance, followed by Scheffe’s test. Data are expressed as means *
SE. P < 0.05 was considered significant.

RESULTS

Overexpression of FOXOI changes expression of amino
acid-related genes in skeletal muscle. FOXO1 may affect
amino acid metabolism. First, we examined amino acid
metabolism-related gene expression in the skeletal muscles
of FOXO1-Tg mice. The expression of cathepsin L and GS
increased threefold in FOXO1-Tg compared with WT mice
(Fig. 1A), whereas the expression of the branched-chain
amino acid (BCAA)-metabolizing enzymes BCAT2,
BCKDH, and BCKDK remained unchanged. In this exper-
iment, the expression of ALT2 increased marginally (Fig.
1A). We confirmed increased protein expression of FOXO1
and GS in FOXO1-Tg mice. The protein expression of GS
increased fourfold in FOXO1-Tg compared with WT mice
(Fig. 1B). These data suggested a preferential increase in GS

-2051 +1

-3397
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expression among amino acid metabolism-related genes due
to the increased FOXOI1 expression in skeletal muscle in
FOXO1-Tg mice.

FOXOI deletion suppresses induction of GS expression
by fasting in skeletal muscle. In addition to a gain-of-
function experiment (FOXOI1-Tg mice), we performed a
loss-of-function experiment to elucidate the physiological
aspect of FOXO1 function in skeletal muscle. We also
examined GS and other amino acid metabolism-related gene
expressions in skeletal muscles of FOXO1-KO mice. Fast-
ing induced threefold FOXO1 expression in WT mice but
showed only residual expression in fed and fasted
FOXO1-KO mice (Fig. 2A). Fasting induced 2.2-fold ca-
thepsin L expression in WT mice but not in FOXO1-KO
mice (Fig. 2A). Similarly, fasting increased GS expression
threefold in WT mice, whereas this effect was markedly
suppressed in FOXO1-KO mice (Fig. 2A). We observed
increased twofold FOXO1 and GS protein levels by fasting
WT mice. In KO mice, the FOXO1 protein level was very
low, and the fasting-induced GS protein level observed in
WT mice was suppressed (Fig. 2B). These data support the
notion that GS is a target gene of FOXOI in vivo.

Fig. 5. Transient transfection reporter assay
of the effect of FOXO1 on GS. The effect of
increasing the expression of FOXOIl was
examined by cotransfection with a reporter
plasmid in C>C> cells. Top: mouse genomic
DNA (GS gene). Exons (filled boxes), tran-
scription start site (+1), translation start site
(ATG), and stop codon are shown. The con-
structs include a 3.4-kb genomic promoter
region and the first exon (—3,397 to +140
from the transcription start site), the lu-
ciferase reporter gene, the GS transcription
termination and polyadenylation signal [3'-
untranslated region (UTR)], and the immedi-
ate downstream sequence (GS tail). A sche-
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Activated FOXOI induces GS expression in C2C; cells. We — Therefore, we tested a Luc reporter construct containing the 5’
next examined FOXO1-dependent GS expression in mouse region (promoter) and 3'-UTR/GS-tail from mouse GS.
C,C cells expressing the tamoxifen-inducible fusion protein FOXOI1 expression vector enhanced Luc activity of mouse GS
FOXOI1-ER (35). Activated FOXOI1-ER translocated to the in a similar dose-dependent manner to that observed for the rat
nucleus and induced the expression of FOXO1 target genes. gene (data not shown). Then, we constructed a series of
Endogenous FOXO1 mRNA was very low in C>Cj cells. As deletion mutants (Fig. 5). Deletion of the 5’ promoter region
expected, treatment with tamoxifen did not change FOXO1 did not affect FOXOIl-induced Luc activity. In contrast,
mRNA levels [the sum of endogenous FOXO1 mRNA and deletion of the 3’ region (3’-UTR/GS tail) markedly de-
retrovirus-derived FOXO1(3A)-ER mRNA; data not shown]. creased basal and FOXO1-dependent Luc activity. Mutation
In the presence of tamoxifen, cathepsin L mRNA expression of a putative FOXO1-binding element [GTAAACAA; called
was increased 3.5-fold and GS mRNA expression fourfold, DBE (11)] in the 3’ region markedly suppressed FOXO1-
suggesting that FOXOI1 increased GS expression directly in  dependent Luc activity, suggesting that FOXO1 acts on the
muscle cells (Fig. 3). However, the mRNA expression of 3’ region of GS.

BCAA-metabolizing enzymes and ALT2 remained unchanged FOXOI is recruited to the 3" region of the GS gene. We also
(Fig. 3). Then, we analyzed the GS protein level in the cells. performed ChIP analysis using C,C;» cells expressing
The GS protein level is known to be downregulated by glu- FOXOI1-ER (Figs. 3 and 4) and found that FOXO1 was
tamine in the medium (15, 34). Thus, we performed experi- recruited to the 3" region of mouse GS, which encompasses the
ments in both the presence and absence of glutamine in the DBE, but only if FOXOI1 was activated by the presence of
medium. Endogenous FOXO1 protein levels were similar in  tamoxifen (Fig. 6). No binding to putative FOXO1-binding
all samples (Fig. 4). Tamoxifen treatment increased the elements (AAACAA or TTGTTT) (1, 8, 10, 18, 27) was found
FOXOI1-ER fusion protein level in this experiment. Glutamine in the 5’ region (promoter) of GS (Fig. 6). The above obser-
suppressed the GS level (0.5-fold), which is consistent with  vations suggest that GS is a direct target of FOXOI1 in skeletal
previous studies (15, 34). In the presence of tamoxifen, GS muscles and that FOXO1 upregulates GS expression through
protein levels were increased twofold both in glutamine-free the 3’-UTR/GS tail.

and glutamine-containing medium (Fig. 4). Thus, FOXO1 Physiological significance of FOXOI-mediated increase in
upregulated GS mRNA and the protein level in cells. These GS expression in skeletal muscle. To elucidate the physiolog-
data show that the expression of GS is regulated similarly in ical significance of FOXO1-induced GS expression, we exam-
vivo and in C,Cy, cells. ined blood ammonia levels in FOXO1-KO mice after ammonia

FOXOI enhances transcriptional activity of GS via the 3' infusion. Before the ammonia injection, blood ammonia levels
region of the gene. Because the GS gene appeared to be a direct  were similar between WT and FOXO1-KO mice. The ammo-
transcriptional target of FOXO1 in myocytes in vivo and in nia infusion increased blood ammonia concentration in both
vitro, we tested this hypothesis using a transient transfection WT and FOXOI1-KO mice, but the concentration in
reporter assay. Both the 5’ promoter region and 3'-UTR/GS FOXO1-KO mice was twofold higher than in WT mice
tail are important for full gene activity in the rat GS gene (28). (Fig. 7A). Since GS mRNA and protein expressions in muscle
In the in vitro transfection assay, FOXO1 dose-dependently were lower (0.3- and 0.5-fold, respectively) in FOXO1-KO
activated the rat GS reporter construct (data not shown). thanin WT mice (Fig. 7, B and C), this result suggests that the
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immunoprecipitation assay in C2C;» cells expressing
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(open bars) or tamoxifen (black bars) with a FOXO1
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Fig. 7. Effect of NH4HCOs3 infusion into the external jugular vein on circu-
lating ammonia concentration in FOXO1-KO mice. A: WT (open bars; n = 3)
and FOXO1-KO mice (black bars; n = 3) (means = SE) were subjected to
ammonia infusion. Ammonia levels in plasma, 80 min after infusion (flow rate
of 50 wmol/h), are shown. The results represent 3 independent experiments.
B: mRNA expression of FOXO1 and GS. ***P < 0.001, **P < 0.01, and
*P < 0.05 compared with WT mice. C: protein expression of GS. Immediately
after the experiment in A, RNA and protein samples from skeletal muscle
tissue were obtained and tested for FOXOI1 and GS mRNA levels and GS
protein level.

capacity for GS-mediated ammonia detoxification was attenu-
ated in FOXO1-KO mice.

DISCUSSION

Skeletal muscles account for 70% of the endogenous pro-
duction of glutamine in humans (3, 25), ~15% of which arises
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from proteolysis and the remainder from de novo synthesis (3,
19). Glutamine is among the most abundant free amino acids in
mammals (4) and can serve as an oxidative fuel for enterocytes
and leukocytes, a precursor of purine and pyrimidine synthesis,
a modulator of protein turnover, and an intermediate for
gluconeogenesis and acid base balance as well as temporary
storage of amino groups and ammonia transport (14). The only
enzyme capable of glutamine synthesis is GS (14). Both
FOXO1 and GS are upregulated in conditions associated with
muscle atrophy (20, 21), such as fasting, diabetes, and ad-
vanced cancer (20, 21). Glutamine synthesized by GS may
serve as a substrate for gluconeogenesis during fasting and
diabetes (29, 32). In advanced cancer, glutamine serves as an
energy source for tumor growth (7). Synthesized glutamine in
skeletal muscle is released into the circulation and other organs
(23). Consistently, in our study, the glutamine level was not
increased in the skeletal muscle of FOXO1-Tg mice with an
increased GS level (data not shown), suggesting that synthe-
sized glutamine is secreted to other organs. Indeed, a previous
study reported that during fasting the GS level was increased,
but the muscle glutamine level was not increased (23). Thus,
FOXO1-mediated GS upregulation appears to reflect a regula-
tory pathway that facilitates the role of muscle protein degra-
dation if substrates are required for energy-requiring cells
elsewhere in the body.

GS expression is known to be regulated by hormones and
nutrition at mRNA (transcriptionally) and protein (posttran-
scriptionally and/or posttranslationally) levels. For example,
glucocorticoid, a catabolic hormone, upregulates GS mRNA
expression in various cells (2, 9, 34). On the other hand,
insulin, an anabolic hormone, suppresses glucocorticoid-in-
duced GS mRNA level in cells such as adipocytes (2, 34).
Meanwhile, exogenous glutamine addition does not affect the
GS mRNA level, but it decreases the GS protein level in cells
(15, 34), which was also observed in the present study. FOXO1
is a catabolic transcriptional regulator that is known to have an
opposite effect to insulin (24). In addition, it has been shown
that FOXO1 and glucocorticoid receptor (GR) act synergisti-
cally in muscle (33). Thus, increased GS mRNA and protein
expression by increased FOXO1 are consistent with the known
direction of the physiological regulation of GS (increased by
glucocorticoid and suppressed by insulin). Namely, FOXO1
may coactivate GR and increase the GS mRNA level. In the
insulin/FOXO1 relationship, insulin-mediated kinase signaling
phosphorylates and degrades FOXO1 protein (24). Thus, the
insulin-mediated suppressed GS mRNA level may be involved
in this process, which remains to be clarified. In this study,
FOXO1 regulated GS at the mRNA level, and the in vitro
reporter assay and ChIP assay indicated that FOXO1 regulates
GS transcriptional activity. Thus, GS protein changed by glu-
tamine is likely a differently regulated mechanism from the
FOXO1 pathway.

Recently, van der Vos et al. (31), using a similar approach to
our present study, demonstrated that a fusion protein of
FOXO03a and ER also activates GS expression transcription-
ally. In contrast to our finding that FOXO1 mediates its effect
on GS expression in C2C;, muscle cells via the GS tail, van der
Vos et al. (31) reported that FOXO3a regulates GS expression
in human embryonic kidney-293 cells via the promoter region.
Apart from the use of different cell types, the reason for this
discrepancy is not clear at present. Although the issue of where
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FOXO transcription factors interact with the GS gene may
need additional study, our present study demonstrated clearly
that FOXO1 regulates GS gene expression in skeletal muscle in
vivo, in FOXOl-overexpressing and -depleted mice, and in
vitro.

In this study, we observed a decreased capacity to detoxify
ammonia concurrent with decreased GS expression in
FOXO1-KO mice. This observation is consistent with the
earlier finding that the capacity for ammonia detoxification
decreases in skeletal muscle-specific GS-KO mice (14). Ex-
pressions of both FOXO1 and GS are increased during muscle
degradation in various experimental models of muscle atrophy
(20, 21). The induction of GS expression by FOXO1 shown
here suggests that FOXO1 signaling may facilitate ammonia
detoxification during skeletal muscle degradation. Conversely,
the GS expression and ammonia detoxification capacity of
muscle increased in a rat model of acute liver failure (ligation
of the hepatic artery) with elevated blood ammonia levels (5,
19). We generated a liver failure model by injecting mice with
a-naphthylisothiocyanate (12) and also observed a marked
increase in FOXO1 and GS expression in skeletal muscles
(data not shown), again suggesting that a FOXO1-mediated
increase in GS expression may enhance the ammonia-detoxi-
fying capacity of skeletal muscle.
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